

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

Die im Kern- und Schulcurriculum aufgeführten Unterpunkte entsprechen der Kapitelnummerierung im Lehrbuch Lambacher Schweizer Kursstufe (ISBN 978-3-12-735310-5 (1.Auflage) und sind für den Unterrichtsgang nicht verbindlich. Die fettgedruckten Begriffe in der ersten Spalte sind vom Bildungsplan verbindlich vorgegeben.

Wichtig:

Neben den in bisherigen Abituraufgaben verwendeten mathematischen Schreibweisen werden im Zuge der Übernahme von IOB-Aufgaben sowie der Einführung des IOB-Formeldokuments auch die folgenden Notationen innerhalb der schriftlichen Abiturprüfung verwendet und daher bei den Schülerinnen und Schülern als bekannt vorausgesetzt:

Notation	Erklärung
IR+, IR ₀ +, IR\{2}	Mengen reeller Zahlen
[a;b],]a;b],]-∞;b]	Intervalle reeller Zahlen
$\sum_{i=1}^{n} x_{i}$	Summationszeichen
$\lim_{x \to x_0} f(x)$ $f(x) \to +\infty \text{ für } x \to -\infty$ $f(x) \xrightarrow{x \to -\infty} +\infty$	Limes-Schreibweisen
λ, μ	griechische Parameter (bei Geraden-, Ebenengleichungen)
$\vec{u} \circ \vec{v}$	Skalarprodukt
AB	Strecke
ĀB	Länge einer Strecke
(2 -3), (2 -3 1)	alternative Notation für einen Punkt im zwei- bzw. dreidi- mensionalen Koordinatensystem ohne Bezeichner
$\overline{A} \cup B$, $\overline{A \cap B}$	Verknüpfungen von Ereignissen (Negation, Vereinigung, Schnitt)
P _A (B)	bedingte Wahrscheinlichkeit
$P_{p}^{n}\left(X=k\right) ,\;P_{p}^{n}\left(k_{1}\leq X\leq k_{2}\right)$	Wahrscheinlichkeit bei binomialverteilter Zufallsgröße X mit den Parametern p und n

Anforderungen an Schülerlösungen und deren Dokumentation

Von den Schülerinnen und Schülern wird eine saubere und nachvollziehbare Dokumentation erwartet, dazu gehören insbesondere:

- · durch Verbalisierung des Vorgehens und Ergebnissätze strukturierte Darstellung
- · angemessener sprachlicher Ausdruck, insbesondere korrekte Fachsprache
- · Definition neu eingeführter Bezeichnungen
- · keine Angaben über Tastenfolgen von WTR-Eingaben

Operatorer

Die Bedeutung der bei Arbeitsaufträgen verwendeten Operatoren entspricht in den meisten Fällen (z. B. bei *deuten, interpretieren, erfäutern*) dem allgemein üblichen Sprachgebrauch. Die folgenden Hinweise beschreiben bei typischen und häufig vorkommenden Operatoren Umfang und Qualität der erwarteten Lösung.

Operator	Hinweise
angeben	kein Ansatz, keine Begründung, kein Lösungsweg
nennen	
darstellen	
beschreiben	sprachlich (auch fachsprachlich) angemessene Formulierungen
	keine Begründung
begründen	logisches Schließen bzw. Argumentieren
nachweisen	
zeigen	
beurteilen	mit Begründung
berechnen	mathematischer Ansatz
	nachvollziehbar dokumentierter rechnerischer Lösungsweg
bestimmen	Art des Vorgehens frei wählbar (grafisch, rechnerisch),
ermitteln	sofern nicht anders angegeben
untersuchen	nachvollziehbarer dokumentierter Lösungsweg
grafisch darstellen	möglichst genaue Darstellung
zeichnen	
skizzieren	bei Koordinatensystemen: beschriftete und skalierte Achsen
	Reduktion auf charakteristische Eigenschaften

Wird in einer Aufgabenstellung ein "exakter Wert" gefordert, dann ist damit ein mathematisch exakter Ausdruck (z. B. $\frac{5}{7}$, In 2, $\frac{\pi}{4}$) gemeint, nicht eine gerundete Dezimalzahl.

ACHTUNG: IQB-FORMELDOKUMENT:

Das Formeldokument im Detail

Im Vergleich zu BW andere Notation/Begriffe

- Operationszeichen beim Skalarprodukt:
 statt -
- λ und μ statt r und s bzw. t in der Parameterform einer Ebene
- offene Intervallgrenzen:]; [statt (;)
- $P_n^n(X=k)$ für eine binomialverteilte Zufallsgröße X
- · "Polynom" statt "ganzrationale Funktion"
 - Nur noch p-q-Formel statt Mitternachtsformel!
 - Satz des Pythagoras mit u,v und w statt a.b und c!

Im Vergleich zu BW neue Objekte/Begriffe

- Mengenoperationszeichen \ (∩,∪ gab es schon in BW)
- Summenzeichen ∑ (bei Erwartungswert, Varianz)

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

3.8.15.2 Mathematik Kursstufe 5-stündig BP 2016

Standards für inhaltsbezogene Kompetenzen	Kerncurriculum (3/4)	Schulcurriculum (1/4)	Empfohlener Stunden- umfang	Prozessbezogene Kompetenzen	Beitrag zur Leitper- spektive	Fach- spezifika / Didaktme- thod. Über- legungen
---	-------------------------	-----------------------	-----------------------------------	--------------------------------	-------------------------------------	--

I. Grundlagen der Differenzialrechnung

Die Schülerinnen und Schüler lernen neben der natürlichen Exponential- und Logarithmusfunktion weitere Funktionen kennen, die sich aus Verknüpfungen oder Verkettungen ergeben. Sie untersuchen Funktionen und ihre Graphen auf charakteristische Eigenschaften. Im Bereich der Extremwertprobleme, der Bestimmung von Funktionstermen und der Untersuchung von Funktionenscharen findet die Differentialrechnung weitere Anwendung.

1. Ableitung und Ableitungsfunktion	Wiederholung Klasse 10/11: Differenzenquotient, Differenzialquotient, differenzierbar, Ableitung, graphisch ableiten		Einsatz von graphischen Unterstützun gsgeräten (z.B. PC, Tablet, Ipad,)
	Allgemeine Tan- gentengleichung y = f'(a)(x-a) + f(a)		
2. Ableitungsregeln, höhere Ableitungen	Wiederholung Klasse 10/11: Potenz-,Faktor-, Summenregel, wichtige Ableitungen		

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

Gebrochenrationale	3. Verkettung von			
Funktionen durch	Funktionen			
Verbindung der				
Ableitungsregeln in einfachen				
Fällen ableiten				
Funktionen verketten und				
Verkettungen von				
Funktionen erkennen				
die Kettenregel zum	4. Kettenregel			
Ableiten von				
Funktionstermen verwenden				
die Produktregel zum	5. Produktregel	Quotientenregel		
Ableiten von				
Funktionstermen verwenden				
	6. Monotonie und	Wiederholung Klasse		
	Krümmung	10/11:		
		Monotoniesatz		
		Monotonieintervalle		
		bestimmen		
	7 5			
	7. Extrem- und			
	Wendepunkte			

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

3.8.15.2 Mathematik Kursstufe 5-stündig BP 2016

Extremwertprobleme mit	8.	Randextrema		
Nebenbedingungen	Extremwertprobleme	Sprachliche Aus-		
	mit	drücke in mathema-		
	Nebenbedingungen	tische Ausdrücke		
		übersetzen		
		Untersuchung von		
		Extremwert-		
		problemen möglich		

II. Exponential- und Logarithmusfunktionen

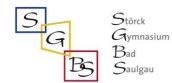
Die Schülerinnen und Schüler lernen neben der natürlichen Exponentialfunktion weitere Funktionen kennen, die sich aus einfachen Verknüpfungen oder Verkettungen ergeben. Sie untersuchen Funktionen und ihre Graphen auf charakteristische Eigenschaften (unter anderem Monotonie, Extrempunkte, Krümmungsverhalten, Wendepunkte, waagrechte Asymptoten) auch mithilfe von höheren Ableitungen.

die euler'sche Zahl e näherungsweise bestimmen ein iteratives Verfahren zur näherungsweisen Bestimmung von Nullstellen begründen und durchfuhren	Die natürliche Exponentialfunktion und die Euler'sche Zahl e	Näherungswert für e = 2,718	2.2 Probleme lösen 3,6 2.4 Mit sym 5,6,7	Einsatz von graphischen Unterstützun gsgeräten (z.B. PC, Tablet, Ipad,)
die besondere Bedeutung der Basis e bei Exponentialfunktionen erläutern; charakteristische Eigenschaften der Funktion f mit f(x)=e ^x beschreiben;	2. Exponentialgleichung en und natürlicher Logarithmus	$e^{\ln(b)} = b$ und $\ln(e^c) = c$		

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

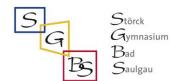
dia Ablaitus matumbaticl				
die Ableitungsfunktion der				
Funktion f mit f(x)=e ^x				
angeben;				
die Ableitungsfunktion der				
Funktion f mit $f(x)=log(x)$				
angeben				
die Graphen der natürlichen	3. Graphen und	Kombination mit		
Exponential- und	Exponentialfunktionen	Potenzfunktionen;		
Logarithmusfunktion unter		Verhalten für		
Verwendung		$x \rightarrow \pm \infty$		
charakteristischer		Anwendungs-		
Eigenschaften skizzieren und		aufgaben		
die Beziehung zwischen den				
Graphen				
beschreiben				
	4.	Extremstellen von		
	Exponentialfunktionen	Funktionen mit		
	mit Parametern	einem Parameter		
		berechnen;		
		Anwendungs-		
		aufgaben		
	5. Die	Exponentielles		
	Logarithmusfunktion	Wachstum;		
	und ihre Ableitung	Verdopplungs- und		
		Halbwertszeit:		
		Anwendungs-		
		aufgaben		
		auiyabeii		
		Beschränktes		
		Wachstum möglich		
		vvacnstuni moglich		

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik


3.8.15.2 Mathematik Kursstufe 5-stündig BP 2016

6.	Exponentielles
Wachstumsvorgäng	e Wachstum;
	Verdopplungs- und
	Halbwertszeit;
	Anwendungs-
	aufgaben
	Beschränktes
	Wachstum möglich

III. Integralrechnung


Die Schülerinnen und Schüler ziehen Rückschlüsse von der Änderungsrate auf den Bestand und nutzen das Integral für Flächeninhaltsberechnungen. Diese Kenntnisse werden zur Modellierung außermathematischer Sachverhalte und zur Funktionsbestimmung verwendet. Dabei werden die händischen Fertigkeiten der Schülerinnen und Schüler durch den Einsatz digitaler Werkzeuge ergänzt.

Funktionen aus ihren Änderungsraten rekonstruieren den Bestand aus Anfangsbestand und Änderungsraten bestimmen	1. Rekonstruktion einer Größe	Geometrische Betrachtungen; Gesamtänderung; Anwendungs- aufgaben		Einsatz von graphischen Unterstützun gsgeräten (z.B. PC, Tablet, Ipad,)
den Wert des bestimmten Integrals als orientierten Flächeninhalt und als Bestandsveränderung erklären	2. Das Integral als orientierter Flächeninhalt	Integrand		,

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

don Inhalt dos Herretest-se	2 Day Hauntaatz day	Ctammfunktian	in month and ations	
den Inhalt des Hauptsatzes	3. Der Hauptsatz der	Stammfunktion	in mathematisch-	
der Differential- und	Differenzial- und		en Zusammen-	
Integralrechnung angeben;	Integralrechnung		hängen Vermu-	
den Hauptsatz der			tungen entwickeln	
Differential- und			und als mathe-	
Integralrechnung in			matische Aus-	
Begründungszusammenhäng			sage formulieren;	
en, zum			beim Erläutern	
Beispiel zum Nachweis der			und Begründen	
Linearität des Integrals,			unterschiedliche	
nutzen			Darstellungsform	
die Linearität des Integrals			en verwenden	
anschaulich begründen und				
rechenökonomisch nutzen			2.1	
			Argumentieren	
			und Beweisen 1,	
			7, 9, 10, 12	
die Potenzregel, die Regel	4. Bestimmen von	Rechenregeln für	, -, -,	
für konstanten Faktor, die	Stammfunktionen	Integrale		
Summenregel sowie das				
Verfahren der linearen				
Substitution für die				
Bestimmung einer				
Stammfunktion verwenden				
vom Graphen der Funktion				
auf den Graphen einer				
Stammfunktion schließen				
und umgekehrt;				
eine Stammfunktion der				
Funktion f mit f(x)=e ^x				

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

angeben; Stammfunktionsterme zu den Funktionstermen $\sin(x), \cos(x), e^x, \frac{1}{x}$ angeben den Hauptsatz der Differential- und Integralrechnung zur Berechnung von bestimmten Integralen nutzen				
die Begriffe Integralfunktion und Stammfunktion gegeneinander abgrenzen	5. Integralfunktionen	Zusammenhänge zwischen f und F: Nullstellen, Extremstellen, Wendestellen, Sattelstellen		
das bestimmte Integral als Grenzwert einer Summe erläutern und geometrisch deuten Flächeninhalte zwischen Graph und x-Achse und zwischen zwei Graphen bestimmen	6. Integral und Flächeninhalt	Mittelwerte, Rotationskörper und unbegrenzte Flächen möglich	2.2 Probleme lösen 3,6 2.4 Mit sym. 1,4,5,7	
den Mittelwert einer Funktion auf einem Intervall berechnen	7. Mittelwerte von Funktionen		2.2 Probleme lösen 2, 11 2.3 Modellieren 1, 9, 10	

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

das Volumen von Körpern berechnen, die durch Rotation von Flächen um die x-Achse entstehen uneigentliche Integrale untersuchen	8. Rotationskörper und ihr Volumen 9. Unbegrenzte Flächen und uneigentliche Integrale		2.2 Probleme lösen 3, 6 2.4 Mit symbolischen 1, 4, 5, 7	
IV. Funktionen und ihre Gr	aphen			
ein iteratives Verfahren zur näherungsweisen Bestimmung von Nullstellen begründen und durchführen die Graphen von Funktionen in einfachen Fällen auf waagrechte und senkrechte Asymptoten und Nullstellen untersuchen, deren Funktionsterm als Quotient zuvor behandelter Funktionstypen gebildet werden kann	Bestimmen von Nullstellen Definitionslücken und senkrechte Asymptoten	Wiederholung Klasse 7-11 $f(x) = a \cdot \sin(x-c) + d$		Einsatz von graphischen Unterstützun gsgeräten (z.B. PC, Tablet, Ipad,)
die Graphen von Funktionen in einfachen Fällen auf waagrechte und senkrechte Asymptoten und Nullstellen untersuchen,	3. Verhalten von Funktionen für $x \to \pm \infty$, waagrechte Asymptote			

Störck Gymnasium Bad Saulgau

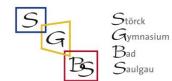
- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

3.8.15.2 Mathematik Kursstufe 5-stündig BP 2016

deren Funktionsterm als Quotient zuvor behandelter Funktionstypen gebildet werden kann				
Graphen von zusammengesetzten Funktionen (Summe, Produkt, Verkettung) untersuchen; einen Funktionsterm zu gegebenen Eigenschaften eines Graphen ermitteln	4. Graph und Funktionsterm	Wiederholung Klasse 7-11 Wdh. Kurvendiskussion	2.3 Modellieren 7	
	5. Trigonometrische Funktionen	Wiederholung Klasse 10/11 $f(x) = a \cdot \sin(x-c) + d$		
bei Funktionenscharen einzelne Fragestellungen zu Eigenschaften ihrer Graphen oder zu Zusammenhängen zwischen den Graphen untersuchen	6. Untersuchen von Funktionsscharen			
	7. Näherungsweises Berechnen von Nullstellen			

V. Lineare Gleichungssysteme

Die Schülerinnen und Schüler lernen das Gaußverfahren kennen und verwenden. Dabei liegt der Schwerpunkt auf der Lösungsstrategie und nicht auf aufwändigen Berechnungen, vielmehr setzen sie hier auch geeignete Software ein.


- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

das Gaußverfahren zum Lösen eines linearen Gleichungssystems als ein Beispiel für ein algorithmisches Verfahren erläutern	1. Das Gauß- Verfahren	Wiederholung Klasse 7-11: Lineare Gleich- ungen;2x2-LGS: Lösungsvielfalt	Routineverfahren anwenden und miteinander kombinieren
das Gaußverfahren, auch in Matrixschreibweise, zum Lösen eines linearen Gleichungssystems durchführen die Lösungsmenge eines linearen 3x3-Gleichungssystems geometrisch interpretieren	2. Lösungsmengen linearer Gleichungssysteme		Hilfsmittel (zum Beispiel Formel- sammlung, Geo- dreieck und Zirkel, Taschen- rechner,Software) problemangemes sen auswählen und einsetzen
einen Funktionsterm zu gegebenen Eigenschaften eines Graphen ermitteln	3. Bestimmen ganzrationaler Funktionen	Mischungen möglich	zu einer Situation passende mathe- matische Modelle (zum Beispiel arithmetische Operationen, geometrische Modelle, Terme und Gleichungen, stochastische Modelle)

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

			auswählen oder konstruieren	
VI. Geraden und Ebenen				
Die Schülerinnen und Schüler verwenden vektorielle Darstellt geometrischer Fragestellunger	ungen zur Beschreibung			
	1. Vektoren im Raum	Wiederholung Klasse 10/11		Einsatz von graphischen
	2. Geraden im Raum	Wiederholung Klasse 10/11		Unterstützun gsgeräten
Ebenen mithilfe einer Parameterdarstellung analytisch beschreiben	3. Ebenen im Raum – Parameterform	Parametergleich- ung einer Ebene aufstellen; Punktprobe		(z.B. PC, Tablet, Ipad,)
das Skalarprodukt berechnen, geometrisch interpretieren und bei Berechnungen nutzen; die Orthogonalität zweier Vektoren mithilfe des Skalarprodukts überprüfen; das Skalarprodukt geometrisch deuten	4. Zueinander orthogonale Vektoren – Skalarprodukt			
Ebenen mithilfe einer Koordinatengleichung und einer	5. Normalen- und Koordinatengleichung einer Ebene	Normalenvektor;		

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

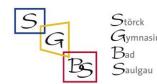
Normalengleichung analytisch beschreiben eine Parameterdarstellung einer Ebene in eine Normalengleichung und in eine Koordinatengleichung umrechnen das Vektorprodukt berechnen, geometrisch interpretieren und bei Berechnungen nutzen das Vektorprodukt geometrisch deuten einen gemeinsamen orthogonalen Vektor zu zwei Vektoren bestimmen	6. Ebenengleichungen umformen – das Vektorprodukt		zwischen natür- licher Sprache und symbolisch- formaler Sprache der Mathematik wechseln; mathematische Darstellungen zum Strukturieren von Information- en, zum Modellieren und	
			Modellieren und zum Problem- lösen auswählen und verwenden	
Ebenen mithilfe von Spurpunkten und Spurgeraden im Schrägbild eines Koordinatensystems veranschaulichen	7. Ebenen veranschaulichen			

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

3.8.15.2 Mathematik Kursstufe 5-stündig BP 2016

zwischen Gerade – Ebene und Ebene – Ebene die Lagebeziehung untersuchen sowie gegebenenfalls die Schnittgebilde rechnerisch bestimmen	8. Gegenseitige Lage von Ebenen und Geraden	Durchstoßpunkt		
zwischen Gerade – Ebene und Ebene – Ebene die Lagebeziehung untersuchen sowie gegebenenfalls die Schnittgebilde rechnerisch bestimmen	9. Gegenseitige Lage von Ebenen	Lagebeziehung von Ebenen in Koordinaten- und in Parameterform Schnittgerade möglich		

VII. Abstände und Winkel


Die Schülerinnen und Schüler berechnen mit den Methoden der analytischen Geometrie Abstände und Winkelweiten zwischen geometrischen Objekten in der Ebene und im Raum. Sie nutzen hierfür das Skalar- oder Vektorprodukt zweier Vektoren und ermitteln auch Flächen- und Rauminhalte.

Tidonon and Radininiano.				
die Hesse'sche	1. Abstand eines	Lotfußpunktverfa	Berechnungen	Einsatz von
Normalenform einer	Punktes von einer	hren	ausführen;	graphischen
Ebenengleichung zur	Ebene - HNF		Routineverfahren	Unterstützun
Berechnung des Abstands			anwenden und	gsgeräten
eines			miteinander	(z.B. PC,
Punktes zu einer Ebene			kombinieren;	Tablet, Ipad,
anwenden			Algorithmen)
Abstände zwischen den			reflektiert	·
geometrischen Objekten			anwenden	
Punkt, Gerade und Ebene				

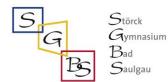
- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

(auch zwischen windschiefen Geraden) ermitteln				
Abstände zwischen den geometrischen Objekten Punkt, Gerade und Ebene (auch zwischen windschiefen Geraden) ermitteln	2. Abstand eines Punkte von einer Geraden	Punkt mit vorgegebenem Abstand bestimmen	2.4 Mit symbolischen 5, 6	4,
Abstände zwischen den geometrischen Objekten Punkt, Gerade und Ebene (auch zwischen windschiefen Geraden) ermitteln	3. Abstand zueinander windschiefer Geraden			
das Skalarprodukt berechnen, geometrisch interpretieren und bei Berechnungen nutzen Winkelweiten mithilfe des Skalarprodukts bestimmen	4. Winkel zwischen Vektoren – Skalarprodukt			
Schnittwinkel zwischen geometrischen Objekten (Geraden und Ebenen) bestimmen	5. Schnittwinkel	Bedeutung des Betrags	Berechnungen ausführen; Routineverfahre anwenden und	en
das Vektorprodukt berechnen, geometrisch interpretieren und bei Berechnungen nutzen	6. Anwendungen des Vektorprodukts	Flächeninhalte von Parallelogramm und Dreieck, Volumen von	miteinander kombinieren; Algorithmen reflektiert	

3.8 Kern- und Schulcurricula Kursstufe

3.8.15 Mathematik

das Vektorprodukt zum Ermitteln von Flächeninhalten anwenden		Pyramiden	anwenden; 2.2 Probleme lösen 1, 2, 3 2.3 Modellieren 1, 3, 4, 7 2.4 Mit symbolischen 1, 2, 3, 4, 5, 8	
Problemstellungen, wie zum Beispiel Spiegelung eines Punktes an einer Ebene , Spiegelung einer Geraden an einem Punkt,	7. Spiegelung und Symmetrie	Symmetriezentrum bzw. Symmetrieebene bestimmen	2.2 Probleme lösen 1, 2, 3 2.3 Modellieren 1, 2, 3, 4, 6, 7 2.4 Mit symbolischen 1, 2, 3, 4, 5, 8	
Flächeninhalts- und Volumenberechnungen sowie Untersuchungen geradliniger Bewegungen, im Raum bearbeiten	8. Modellieren von geradlinigen Bewegungen			
einfache mathematische Aussagen und Sätze beweisen, wie zum Beispiel "In einem Trapez ist die Mittellinie parallel zu den Grundseiten", "Die Seitenmitten eines räumlichen Vierecks bilden die	9. Vektorielle Beweise		2.1 Argumentieren und Beweisen 1, 2, 4, 5, 6, 8, 10, 11, 12, 14 2.5 Kommunizieren 1, 2, 3	


- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

Eckpunkte eines Parallelogramms", "In einer						
Raute sind die Diagonalen						
zueinander orthogonal",						
Satz des Thales						
VIII. Wahrscheinlichkeit und	Statistik					
Die Schülerinnen und Schüler Dabei verwenden sie beispiel und berechnen die Werte eine	sweise Baumdiagramme	e oder Vierfeldertafeli	n. Sie lernen dis	skret und stetig vert	eilte Zufallsg	rößen kennen
	1. Wahrscheinlichkeiten berechnen	Wiederholung Klasse 7/8: Produkt- und Summenregel				Einsatz von graphischen Unterstützun gsgeräten (z.B. PC, Tablet, Ipad,)
	2. Vierfeldertafel – bedingte Wahrscheinlichkeit	Wiederholung Klasse 9				,
	3. Binomialverteilung	Wiederholung Klasse 10/11				
	4. Problemlösen mit der Binomialverteilung	Wiederholung Klasse 10/11 (kumulierte) Wahrscheinlichkeit en berechnen;				WTR- Einsatz

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

das Argumentationsmuster erläutern, das dem Testen von Hypothesen zugrunde liegt einseitige Hypothesentests	5. Einseitiger Hypothesentest		2.3 Modellieren 3, 7, 8 2.4 Mit symbolischen 3, 8, 9	
durchführen und den Ablehnungsbereich, die Entscheidungsregel und die Irrtumswahrscheinlichkeit angeben			2.5 Kommunizieren 8	
eine Nullhypothese so formulieren, dass sie der Zielsetzung des Tests entspricht	6. Wahl der Nullhypothese			
Ablehnungsbereich und Irrtumswahrscheinlichkeit an einem Histogramm erläutern zweiseitige Hypothesentests durchführen und den Ablehnungsbereich, die Entscheidungsregel und die Irrtumswahrscheinlichkeit angeben	7. Zweiseitiger Hypothesentest			
Signifikanzniveau und Irrtumswahrscheinlichkeit gegeneinander abgrenzen Fehler erster und zweiter Art im Kontext eines	8. Fehler beim Testen von Hypothesen			

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

Hypothesentests erläutern				
den Einfluss des				
Stichprobenumfangs auf die				
Wahrscheinlichkeiten für den				
Fehler erster Art (das				
Risiko erster Art) und für				
den Fehler zweiter Art (das				
Risiko zweiter Art) angeben				
den Unterschied zwischen	9. Stetige			
diskreten und stetigen	Zufallsgrößen			
Zufallsgrößen erläutern	_			
die Dichtefunktion einer	10. Die		2.3 Modellieren 1,	
normalverteilten	Normalverteilung		4, 5, 7	
Zufallsgröße mithilfe von				
Erwartungswert und				
Standardabweichung				
angeben und die zugehörige				
Glockenkurve skizzieren				
stochastische Situationen				
untersuchen, die zu				
annähernd normalverteilten				
Zufallsgrößen gehören,				
und Wahrscheinlichkeiten				
berechnen				

Leitperspektiven:

- BNE Bildung für nachhaltige Entwicklung
- BTV Bildung für Toleranz und Akzeptanz von Vielfalt
- PG Prävention und Gesundheitsförderung
- BO Berufliche Orientierung

- 3.8 Kern- und Schulcurricula Kursstufe
- 3.8.15 Mathematik

MB

Medienbildung Verbraucherbildung VΒ